
New Challenges in Dynamic Load Balancing

Karen D. Devine 1, Erik G. Boman, Robert T. Heaphy,
Bruce A. Hendrickson

Discrete Algorithms and Mathematics Department, Sandia National Laboratories,

Albuquerque, NM 2

James D. Teresco 3

Department of Computer Science, Williams College, Williamstown, MA

Jamal Faik, Joseph E. Flaherty, Luis G. Gervasio 3

Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY

Abstract

Data partitioning and load balancing are important components of parallel compu-
tations. Many different partitioning strategies have been developed, with great effec-
tiveness in parallel applications. But the load-balancing problem is not yet solved
completely; new applications and architectures require new partitioning features.
Existing algorithms must be enhanced to support more complex applications. New
models are needed for non-square, non-symmetric, and highly connected systems
arising from applications in biology, circuits, and materials simulations. Increased
use of heterogeneous computing architectures requires partitioners that account for
non-uniform computing, network, and memory resources. And, for greatest impact,
these new capabilities must be delivered in toolkits that are robust, easy-to-use, and
applicable to a wide range of applications. In this paper, we discuss our approaches
to addressing these issues within the Zoltan Parallel Data Services toolkit.

Key words: dynamic load balancing, partitioning, Zoltan, geometric partitioning,
hypergraph, resource-aware load balancing

1 Corresponding author: kddevin@sandia.gov.
2 Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed
Martin Company, for the United States Department of Energy’s National Nuclear
Security Administration under Contract DE-AC04-94AL85000.
3 Support provided by Sandia contract PO15162 and the Computer Science Re-
search Institute at Sandia National Laboratories.

Preprint submitted to Elsevier Science

1 Introduction

Load balancing — the assignment of work to processors — is critical in par-
allel simulations. It maximizes application performance by keeping processor
idle time and interprocessor communication as low as possible. In applications
with constant workloads, static load balancing can be used as a pre-processor
to the computation. Other applications, such as adaptive finite element meth-
ods, have workloads that are unpredictable or change during the computation;
such applications require dynamic load balancers that adjust the decomposi-
tion as the computation proceeds. Numerous strategies for static and dynamic
load balancing have been developed, including recursive bisection (RB) meth-
ods [1–3], space-filling curve (SFC) partitioning [4–8] and graph partitioning
(including spectral [2,9], multilevel [10–12], and diffusive methods [13–15]).

These methods provide effective partitioning for many applications, perhaps
suggesting that the load-balancing problem is solved. RB and SFC meth-
ods are used in crash [16], particle [4,16], and adaptive finite element sim-
ulations [1,6,17]. Graph partitioning is effective in traditional [11,12], adap-
tive [18,19], and multiphase [20,21] finite element simulations, due, in part, to
high-quality serial (Chaco [22], METIS [12], Jostle [23], Party [24], Scotch [25])
and parallel (ParMETIS [26], PJostle [23]) graph partitioners.

But as parallel simulations and environments become more sophisticated, par-
titioning algorithms must address new issues and application requirements.
Software design that allows algorithms to be compared and reused is an im-
portant first step; carefully designed libraries that support many applications
benefit application developers while serving as test-beds for algorithmic re-
search. Existing partitioners need additional functionality to support new
applications. Partitioning models must more accurately represent a broader
range of applications, including those with non-symmetric, non-square, and/or
highly-connected relationships. And partitioning algorithms need to be sensi-
tive to state-of-the-art, heterogeneous computer architectures, adjusting work
assignments relative to processing, memory and communication resources.

In this paper, we discuss ongoing research within the Zoltan Parallel Data
Services project [27,28], addressing issues arising from new applications and
architectures. In §2, we discuss Zoltan’s software design and broad application
support. In §3, we present enhancements of some “oldie-but-goodie” geomet-
ric algorithms to address needs of emerging applications and, in particular,
crash and particle simulations. §4 includes a hypergraph partitioning model
with greater accuracy and expressiveness than graph-based models. And in §5,
we present system-sensitive partitioning for heterogeneous computing archi-
tectures. While not an exhaustive survey, this paper highlights our current
efforts and demonstrates that, indeed, more research needs to be done.

2

2 Software

Software design is an important part of dynamic load-balancing research. Un-
fortunately, dynamic load balancing often is added to applications through a
single partitioning algorithm implemented directly in the application. While
this approach has very low overhead (as the partitioner works directly with the
application’s data structures), it has a number of disadvantages. Because only
one algorithm was implemented, the application developer cannot compare the
algorithm to other strategies to evaluate its effectiveness for the application.
The resulting implementation cannot be used in other applications, as it is
tied too closely to the original application’s data structures. The application
developer may not have the expertise or interest to optimize the partition-
ing algorithm. And implementing the partitioner takes time away from the
developer’s primary interest — the application.

Software toolkits provide effective solutions to these software engineering is-
sues [29]. Toolkits are libraries offering expert implementations of related al-
gorithms, allowing straightforward comparisons of methods within an appli-
cation. To further assist applications, they often include other commonly used
services related to their main purpose. By design, toolkits can be used with a
variety of applications and data structures; through their wider use, they ben-
efit from more thorough testing. Of course, applications incur some overhead
in using the toolkits, but with careful design, the overhead can be kept small.
And while application developers must trust the toolkit designers, open-source
release of toolkit software allows careful inspection the implementations.

The Zoltan Parallel Data Services Toolkit [27,28] is an example of such a
toolkit. Zoltan is unique in providing dynamic load balancing and related capa-
bilities to a wide range of dynamic, unstructured and/or adaptive applications.
Zoltan delivers this support in several ways. First, by including a suite of par-
titioning algorithms, Zoltan addresses the load-balancing needs of many differ-
ent types of applications. Geometric algorithms like recursive bisection [1–3]
and space-filling curve partitioning [4,5] provide high-speed, medium-quality
decompositions that depend only on geometric information and are implicitly
incremental. These algorithms are highly effective in crash simulations, par-
ticle methods, and adaptive finite element methods. Graph-based algorithms,
provided through interfaces to the graph partitioning libraries ParMETIS [26]
and PJostle [23], provide higher quality decompositions based on connectivity
between application data, but at a higher computational price. Graph algo-
rithms can also be effective in adaptive finite element methods, as well as
multiphase simulations and linear algebra solvers. Using Zoltan, application
developers can switch partitioners simply by changing a Zoltan run-time pa-
rameter, allowing comparisons of the partitioners’ effect on the applications.

3

Second, Zoltan supports many applications through its data-structure neutral
design. While similar toolkits focus on specific applications (e.g., the DRAMA
toolkit [30] supports only mesh-based applications), Zoltan does not require
applications to have specific data structures. Instead, data to be partitioned
are considered to be generic “objects” with weights representing their compu-
tational cost. Zoltan also does not require applications to build specific data
structures (e.g., graphs) for Zoltan. Instead, applications provide only simple
functions to answer queries from Zoltan. These functions return the object
weights, object coordinates, and relationships between objects. Zoltan then
calls these functions to build data structures needed for partitioning. While
some overhead is incurred through these callbacks, the cost is small compared
to the actual partitioning time. More importantly, development time is saved
as application developers write only simple functions instead of building (and
debugging) complicated distributed data structures for partitioning.

Third, Zoltan provides additional functionality commonly used by applications
using dynamic load balancing. For example, Zoltan’s data migration tools per-
form all communication to move data from old decompositions to new ones;
application developers provide only callback functions to pack data into and
unpack data from communication buffers. (In this respect, application-specific
toolkits like DRAMA [30] can provide greater migration capabilities, as they
have knowledge of application data structures.) Distributed data directories
based on the rendezvous algorithm of Pinar and Hendrickson [31] efficiently
locate off-processor data after repartitioning. An unstructured communication
package can be used for performing communication within complex patterns
of processors and transferring data between multiple decompositions in mul-
tiphase simulations. While these tools operate well together, separation be-
tween tools allows application developers to use only the tools they want; for
example, they can use Zoltan to compute decompositions but perform data
migration themselves, or they can build Zoltan distributed data directories
that are completely independent of load balancing.

Zoltan’s design is effective for both applications and research. It allows both
existing and new applications to easily use Zoltan. New algorithms can be
added to the toolkit easily and compared to existing algorithms in real ap-
plications using Zoltan. In this way, Zoltan serves as our research test-bed
for new development, including enhancements to algorithms, incorporation of
new models, and support for state-of-the-art architectures.

3 Geometric Partitioning

Parallel crash and particle simulations are two application areas driving par-
titioning research. While graph partitioning has been extremely effective for

4

2nd cut

(0,0)

(0,2)

(3,0)

2nd cut

1st cut

cut: x=1.25

cut: y=0.75 cut: y=1.25

0 1 2 3
0

1

2

3

Fig. 1. Cutting planes (left) and associated cut tree (right) for recursive bisection.
Dots are objects to be balanced; cuts are shown with colored lines and tree nodes.

traditional finite element methods (so much so that many application devel-
opers erroneously use the terms “graph partitioning” and “load balancing”
interchangeably), geometric proximity of objects is more important than their
graph connectivity in these applications. In crash simulations, for example,
efficient parallel detection of contact surfaces can be achieved when physically
close surfaces are grouped within processors [16]. While graph-based decom-
positions have been used in contact detection, they require construction of a
geometric map for contact search [32]. Computing a parallel decomposition
with respect to geometric coordinates is a more natural and straightforward
approach. Similarly, greatest efficiency for particle methods is achieved when
subdomains contain particles that are physically close to each other [4,16].
Indeed, particle methods do not have a natural graph connectivity, making
graph partitioning difficult or impossible to apply. Moreover, frequent changes
in proximity due to geometry deformation or particle movement require repar-
titioning strategies that are faster and more dynamic than graph partitioners.

Geometric partitioning is an old, conceptually simple, but often overlooked
technique for quickly and inexpensively generating decompositions. Using only
the geometric coordinates of objects, these methods assign regions of space to
processors so that the weight of objects in each region is equal. Zoltan includes
geometric partitioners based on recursive bisection and space-filling curves.

Recursive bisection (RB) [1–3] computes a cutting plane that divides a phys-
ical region into two subregions, each with half of the simulation’s work (see
Figure 1). This cutting procedure is applied recursively to each subregion until
the number of subregions equals the number of partitions desired. (The num-
ber of partitions need not be a power of two; adjusting the work percentage
on each side of a cut allows any number of partitions.) Zoltan includes Recur-
sive Coordinate Bisection (RCB) [1], which uses cutting planes orthogonal to
coordinate axes, and Recursive Inertial Bisection (RIB) [2,3], which computes
cuts orthogonal to principal inertial axes of the geometry.

A space-filling curve (SFC) maps n-dimensional space to one dimension [33].

5

3. Start of 2nd search

4. Second intersection: white

5. Start of 3rd search1. Start of 1st search

2. First intersection: blue

Fig. 2. SFC partitioning (left) and box-assignment search procedure (right). Dots
(objects) are ordered along the red SFC. Partitions are indicated by color. The black
box specified for box-assignment intersects the blue and white partitions.

In SFC partitioning, an object’s coordinates are converted to a SFC key repre-
senting the object’s position along a SFC through the physical domain. Sorting
the keys gives a linear ordering of the objects (see Figure 2). This ordering is
cut into appropriately weighted pieces that are assigned to processors. Zoltan
method HSFC (Hilbert SFC) replaces the sort with adaptive binning [28].
Based upon their keys, objects are assigned to bins associated with partitions.
Bin sizes are adjusted adaptively to obtain sufficient granularity for balancing.

Geometric methods share many disadvantages and advantages. They are effec-
tive when only geometric locality is important and/or natural graph connec-
tivity is not available. Because they do not explicitly control communication,
geometric partitioners can induce higher communication costs than graph par-
titioners for some applications. However, because of their simplicity, they gen-
erally run faster and are easier to implement than graph partitioners. RCB
and SFC partitioning are also implicitly incremental; that is, small changes in
workloads tend to produce only small changes in the decomposition, resulting
in little data movement between the old and new decompositions. This prop-
erty is crucial in dynamic load balancing since the cost of moving application
data is often high. Given the effectiveness of geometric methods for some ap-
plications, we present two enhancements that increase applicability of these
algorithms: assignment for contact detection and multicriteria partitioning.

Assignment for Contact Detection: In crash simulations, contact detec-
tion consists of finding all mesh points that intersect a given set of surfaces.
Parallel contact detection is often done in two steps [16]: 1) assign each sur-
face to the partitions whose subdomains intersect the surface, and 2) within
each partition, find the points intersecting surfaces assigned in step 1. The
key kernels of step 1 are identifying which partitions’ subdomains intersect a
given point or region. We define these kernels as point-assignment and box-

assignment, respectively. Given a point in space, point-assignment returns

6

the partition owning the region of space containing the point. Given an axis-
aligned region of space (defined by a 2D or 3D box), box-assignment returns
a list of partitions whose assigned regions overlap the specified box; this box
can be, say, a bounding box around a contact surface.

Point- and box-assignment are implemented easily for RB methods [16]. The
cutting planes used to generate a RB decomposition are stored as a binary
tree, as shown in Figure 1. The root represents the plane dividing the ini-
tial geometry into two subregions; children represent planes cutting each of
the subregions. Each leaf represents the partition to which a subregion is as-
signed. This tree describes the entire decomposition, yet is small enough to
be stored on each processor, allowing point-assignment and box-assignment
to be performed in serial.

Using the cut tree, RB point-assignment determines on which side of the root
cut the given point lies, and proceeds to the child subregion containing the
point. Comparisons continue down the tree until a leaf is reached; the leaf’s
partition is returned. For k partitions, RB point-assignment requires O(log k)
operations. Similarly, in RB box-assignment, corners of the box are compared
to the root cut. If any corner is less than the cut, the left child is visited; if any
corner is greater than the cut, the right child is visited. Partitions associated
with all leaves reached during the recursion are returned. RB box-assignment
requires O(log k) operations in typical usage, and O(k) operations in the worst
case (where every partition intersects the box).

In Zoltan’s HSFC partitioning, point-assignment is also easily implemented.
The k − 1 cuts dividing the SFC into k partitions describe the entire decom-
position and can be stored on each processor. The SFC key for the given point
is computed. A binary search for this key in the array of cuts returns the par-
tition owning the space associated with key. Like RB point-assignment, SFC
point-assignment requires O(log k) operations.

Box-assignment, however, is difficult in SFC partitioning. Examination of the
SFC cuts does not provide a description of the physical space assigned to
each partition. Each entrance point of the SFC into the box must be found.
Traversing the SFC is expensive and, unless done at extremely high resolution,
could miss some partitions that lie within the box.

We have developed an efficient box-assignment algorithm for SFC decompo-
sitions. Our implementation is strongly influenced by access of SFC-indexed
databases in which high-dimensional SFCs are used to order database objects.
The box-assignment problem is similar to the database problem of finding all
data objects inside a specified box or all objects “near” a specified object in a
database. Moore [34] developed software for several query methods (including
variations of box-assignment) and fast conversion between Hilbert SFC keys

7

and spatial coordinates; his work was based on earlier work by Butz [35] and
Thomas [36]. Lawder [37,38] presents a Hilbert-like SFC and practical con-
versions and spatial queries for high-dimensional database access; while his
algorithms would work for a true Hilbert SFC, he created a Hilbert-like curve
with more compact state tables necessary for high-dimensional databases.

Our HSFC box-assignment algorithm calls a search routine, Next Query, that
returns one intersecting partition per call. Starting with SFC key zero as
input, Next Query returns the first partition m, 0 ≤ m < k, along the SFC
that intersects the box. Then, starting at the SFC cut between partitions m
andm+1, Next Query returns the next intersecting partition q,m+1 ≤ q < k.
The search ends when no more partitions intersect the box. Thus, Next Query

is called p+1 times, where p is the number of partitions intersecting the box.
An example is shown in Figure 2.

Next Query recursively divides the spatial domain into octants and visits them
in the order that the SFC enters them. The SFC value passed to Next Query

represents the lowest SFC key assigned to the first partition m to check for in-
tersection. Next Query finds the lowest numbered octant intersecting the box
whose SFC key is not less than the input value. For each octant, it creates a
partial SFC key by appending bits representing the octant’s position to bits
from higher octree levels; this partial key represents the subtree rooted at the
current octant. If the partial key is less than the input key, the subtree either
is not in the box or is owned by partitions 0 to m − 1; no further search of
the subtree is needed. Also, if the octant’s extent (computed from the partial
key) does not intersect the box, the search continues to the next octant in the
SFC. If, however, the extent intersects the box, the octant becomes the new
spatial domain, the octant is refined, and the search is applied recursively to
the octant’s children until the required SFC key resolution is reached. (Occa-
sionally, a partial key does not provide enough resolution to rule out a subtree,
even though the subtree does not meet the search criteria; in this case, stored
backtracking information allows efficient restart.) The final computed SFC
key is then the smallest not-previously-found SFC key intersecting the box. A
binary search of the SFC cuts produces the partition in which the computed
key lies. HSFC box-assignment requires O(p log k) operations.

To convert SFC keys to coordinates efficiently, Next Query uses two transition
tables [39]. These tables represent the SFC as an octree without explicitly
constructing the octree. Given an octant and its orientation in the SFC (i.e.,
reflection and rotation of the Hilbert “U” curve), the data table returns bits
indicating the x, y, and z positions of the octant within the orientation. These
bits are concatenated through all levels of the octree and converted to floating
point coordinates. Given an octant and its orientation, the state table returns
the orientation of the SFC for the octant’s children. Inverse tables convert
coordinates to SFC keys. This conversion can be thought of as numbering

8

octants in the order that the SFC enters them, selecting the octant containing
the spatial point, and appending the octant’s number to the key.

Example 1 We tested our HSFC box-assignment algorithm on a 1.04 million-
element mesh of a chemical reactor. We generated an initial decomposition
(96 partitions on a 16-processor Compaq/DEC Alpha cluster at Sandia) us-
ing RCB or HSFC. We then perturbed the mesh coordinates (as in con-
tact/deformation problems) and repartitioned using the same method. For
each method, we did 10,000 box-assignments on each processor. The box size
was the average element size, a typical size in contact detection. Box locations
were chosen randomly. In Table 1, we show the maximum (over all processors)
time and number of intersecting partitions for 10,000 box-assignments. Due to
the less regular shape of HSFC subdomains, more intersecting partitions were
found by HSFC box-assignment. The work needed for local contact search
(step 2 above) is proportional to the number of intersecting partitions; how-
ever, the differences seen here do not raise concern. HSFC partitioning took
less time than RCB partitioning, while HSFC box-assignment took more time
than RCB box-assignment. Since box-assignment is typically done thousands
of times per decomposition, the relative benefits of RCB and HSFC depend on
the particular application and problem. However, for applications preferring
HSFC decompositions, availability of HSFC box-assignment is a benefit. 2

Table 1
Results comparing RCB and HSFC box-assignment for Example 1.

Partitioner # of Intersecting Parts Partitioning Time for 10,000
for 10,000 box-assignments Time box-assignments

RCB 10,931 0.71 secs 0.027 secs

HSFC 10,983 0.59 secs 0.176 secs

Multicriteria Geometric Partitioning: Crash simulations are “multi-
phase” applications consisting of two separate phases: computation of forces
and contact detection. Often, separate decompositions are used for each phase;
data is communicated from one decomposition to the other between phases [16].
Obtaining a single decomposition that is good with respect to both phases
would remove the need for communication between phases. Each object would
have multiple loads, corresponding to its workload in each phase. The chal-
lenge would be computing a single decomposition that is balanced with respect
to all loads. Such a multicriteria partitioner could be used in other situations
as well, such as balancing both computational work and memory usage.

Karypis et al. [21,32,40] have considered multicriteria graph partitioning and
its use in crash simulations. However, since geometric partitioners are often
preferred, we aim to enable geometric algorithms to balance multiple loads.
Good solutions to the multicriteria partitioning problem may not exist for all
problems with geometric methods; the best we can hope for are heuristics that

9

work well on many problems. We are not aware of previous efforts in this area.

Most geometric partitioners reduce the partitioning problem to a one-dimen-
sional problem. RCB, for example, bisects the geometry perpendicular to only
one coordinate axis at a time; the corresponding coordinate of the objects
defines a linear order. Thus, even if the original partitioning problem has
objects in multidimensional space (typically R3), we restrict our attention
to the one-dimensional partitioning problem. This problem is also known as
chains-on-chains, and has been well studied for the single-load case [41–43].

Traditional optimization problems are written in the standard form: minimize
f(x) subject to some constraints. Hence, handling multiple constraints is easy,
but handling multiple objectives is much harder as it does not fit into this form.
Multicriteria load balancing can be formulated as either a multiconstraint
or multiobjective problem. Often, the balance of each load is considered a
constraint and has to satisfy a certain tolerance. Such a formulation fits the
standard form, where, in this case, there is no objective, only constraints.
Unfortunately, there is no guarantee that a solution exists to this problem. In
practice, we want a “best possible” decomposition, even if the desired balance
criteria cannot be satisfied. Thus, an alternative is to make the constraints
objectives; that is, we want to achieve as good balance as possible with respect
to all loads. Multiobjective optimization is a very hard problem, because, in
general, the objectives conflict and there is no unique “optimal solution.”

In dynamic load balancing, speed is often more important than quality of
the solution. The unicriterion (standard) RCB algorithm is fast because each
bisecting cut can be computed very quickly. Computing the cuts is fast because
it requires solving only a unimodal optimization problem. We want the same
speed to apply in the multicriteria case. Thus, we can remove many methods
from consideration because we cannot afford to solve a global optimization
problem, not even in one dimension.

We consider mathematical models of the multicriteria bisection problem. Al-
though the partitioning problem allows for k partitions, we will focus on the
bisection problem, i.e., k = 2. The solution for general k can be obtained
by recursively bisecting the resulting partitions. Given a set of n points, let
a1, a2, . . . , an be the corresponding loads (weights). Informally, our objective
is to find an index s, 1 ≤ s ≤ n, such that

∑

i≤s ai ≈
∑

i>s ai. When each ai is
scalar, this problem is easy to solve. One can simply minimize the larger sum:

min
s
max(

∑

i≤s

ai,
∑

i>s

ai).

In the multicriteria case, however, each ai is a vector and the problem is not
well-defined. In general, no index s achieves approximate equality in every

10

dimension. Applying the weighted sum method to the formula above yields

min
s
wT max(

∑

i≤s

ai,
∑

i>s

ai),

where the maximum of two vectors is defined element-wise and w is a cost vec-
tor, possibly all ones, that combines multiple objectives into a single objective.
This formulation is reasonable for load balancing: assuming component j of
ai represents the work associated with object i and phase j, we minimize the
total time over all phases, where one phase cannot start before the previous
one has finished. Unfortunately, it is hard to solve; because the function is
non-convex, global optimization is required. Instead, we propose a heuristic:

min
s
max(g(

∑

i≤s

ai), g(
∑

i>s

ai)),

where g is a monotonically non-decreasing function in each component of
the input vector. Motivated by the global criterion method, we suggest using
either g(x) =

∑

j x
p
j with p = 1 or p = 2, or g(x) = ‖x‖ for some norm. This

formulation has one crucial computational advantage: the objective function is
unimodal with respect to s. In other words, starting with s = 1 and increasing
s, the objective decreases, until at some point the objective starts increasing.
That point defines the optimal bisection value s. Note that the objective may
be locally flat (constant), so there is not always a unique minimizer.

While we did not explicitly scale the weights in our description above, scaling
is important since our approach implicitly compares values corresponding to
different weight dimensions. We implemented two types of scaling: no scaling
or imbalance-tolerance scaling. No scaling is useful when the magnitude of the
weights reflects the importance of the load types. But in general, the natural
scaling is to make all weight dimensions equally important. To account for
user-specified imbalance tolerances (i.e., amount of load imbalance allowed for
each weight dimension), we scale the weights such that the load types with
the largest imbalance tolerance have the smallest sum, and vice versa.

Example 2 We present results using a 4000-element mesh of a chemical reac-
tor with two weights per element (d = 2). For each element, the first weight is
one; the second corresponds to the number of its faces having no face neighbors
(i.e., on the external surface). This weighting scheme is realistic for contact
problems. Tests were run on a Compaq/DEC Alpha cluster at Sandia. We
divided this mesh into k = 9 partitions using our multicriteria RCB code and
compared against ParMETIS. Results are shown in Table 2. BALANCE[i]
is the maximum processor load for weight i divided by the average processor
load for weight i, i = 0, . . . , d−1. We observe little difference between the mul-
ticriteria RCB algorithms using different norms. The balances are not quite
as good as ParMETIS, which was expected since the RCB cuts are restricted
to orthogonal planes. Still, the multicriteria RCB algorithm produces reason-

11

able load balance for this problem in less time than ParMETIS and provides
a viable alternative for applications lacking graph connectivity. For compari-
son, we include the results for RCB with d = 1; i.e., only the first weight is
used. The edge cuts are the number of graph edges that are cut by partition
boundaries, approximating communication volume in parallel applications. 2

Table 2
Results comparing multicriteria RCB and multicriteria ParMETIS for Example 2.

RCB RCB RCB RCB ParMETIS
k = 9 d = 1 d = 2 d = 2 d = 2 d = 2

norm=1 norm=2 norm=max

BALANCE[0] 1.00 1.13 1.13 1.12 1.01

BALANCE[1] 1.11 1.11 1.16 1.01

Edge Cuts 1576 1502 1500 1468 1516

Time 0.10 0.11 0.12 0.11 0.25

While further experimentation is needed, initial results are promising. A nat-
ural question is how much better one can do by choosing an arbitrary cutting
plane at every step. (RCB is restricted to cutting along coordinate axes.) There
is an interesting theoretical result, known as the Ham Sandwich Theorem [44],
which implies that a set of points in Rn, each with an n-dimensional binary
weight vector, can be cut by a (n − 1)-dimensional hyperplane such that the
vector sum in the two half-spaces differs by at most one in each vector compo-
nent. A linear time algorithm exists for n = 2, and some efficient algorithms
exist for other low dimensions [45].

4 Hypergraph Models

New simulation areas such as electrical systems, computational biology, linear
programming and nanotechnology show the limitations of current partition-
ing technologies. Critical differences between these areas and more traditional
mesh-based PDE simulations include high connectivity, heterogeneity in topol-
ogy, and matrices that are rectangular or non-symmetric. The non-zero struc-
ture of the matrix in Table 4, taken from a density functional theory simulation
of polymer self-assembly [46], is representative of these new applications; one
can easily see the vastly different structure of this matrix compared to a tra-
ditional finite element matrix (Table 3). More robust partitioning models are
needed for efficient parallelization of these applications.

Graph models are often considered the most effective models for mesh-based
PDE simulations. In graph models, graph vertices represent the data to be
partitioned (e.g., elements, matrix rows). Edges represent relationships be-

12

AA

Fig. 3. Example of communication metrics in graph (left) and hypergraph parti-
tioning (right). Edges are shown in blue; the partition boundary is shown in red.

tween vertices (e.g., shared faces, off-diagonal matrix entries), The number of
edges “cut” by a subdomain boundary (i.e., connecting vertices in different
partitions) approximates the volume of communication needed during com-
putation (e.g., flux calculations, matrix-vector multiplication). Vertices and
edges can be weighted to reflect associated computation and communication
costs, respectively. The goal of graph partitioning, then, is to assign equal
total vertex weight to partitions while minimizing the weight of cut edges.

It is important to note that the edge-cut metric is only an approximation of
communication volume. For example, in Figure 3 (left), a grid is divided into
two partitions (separated by a red line). Grid point A has four graph edges as-
sociated with it; each edge (shown in blue) connects A with a neighboring grid
point. Two of the edges are cut by the partition boundary; however, the actual
communication volume associated with sending A to the neighboring proces-
sor is only one grid point. Nonetheless, countless examples demonstrate the
success of graph partitioning in sparse iterative solvers and mesh-based PDE
applications; the approximation is often good enough for these applications.

Another limitation of the graph model is the type of systems it can repre-
sent [47]. Because edges in the graph model are non-directional, they imply
symmetry in all relationships, making them appropriate only for problems rep-
resented by square, symmetric matrices. Non-symmetric systems A must be
represented by a symmetrized model A+AT , adding new edges to the graph
and further skewing the communication metric. While a directed graph model
could be adopted, it would not improve the communication metric’s accuracy.

Likewise, graph models can not represent rectangular matrices, such as those
arising in linear programming. Kolda and Hendrickson [48] propose using bi-
partite graphs. For an m × n matrix A, vertices mi, i = 1, . . . ,m represent
rows, and vertices nj, j = 1, . . . , n represent columns. Edges eij connecting mi

and nj exist for non-zero matrix entries aij. But as in other graph models, the
number of cut edges only approximates communication volume.

Hypergraph models [49] address many of the drawbacks of graph models. As

13

in graph models, hypergraph vertices represent the work of a simulation. How-
ever, hypergraph edges (hyperedges) are sets of two or more related vertices.
The number of hyperedge cuts is an exact representation of communication
volume, not merely an approximation [49]. In the example in Figure 3 (right),
a single hyperedge (shown in blue) including vertex A and its neighbors is asso-
ciated with A; this single cut hyperedge accurately reflects the communication
volume associated with A.

Catalyurek and Aykanat [49] also describe the greater expressiveness of hyper-
graph models over graph models. Hypergraph models do not imply symme-
try in relationships, allowing both non-symmetric and rectangular matrices
to be represented. For example, the rows of a rectangular matrix could be
represented by the vertices of a hypergraph. Each matrix column would be
represented by a hyperedge connecting all non-zero rows in the column.

Hypergraph partitioning’s effectiveness has been demonstrated in many areas,
including VLSI layout [50], sparse matrix decompositions [49,51], and database
storage and data mining [52,53]. Serial hypergraph partitioners are available
(e.g., hMETIS [54], PaToH [49,55], Mondriaan [51]), but for large-scale and
dynamic applications, parallel hypergraph partitioners are needed.

As a precursor to parallel hypergraph partitioning, we have developed a serial
hypergraph partitioner in Zoltan. Like other hypergraph partitioners [49,54,55],
our hypergraph partitioner uses multi-level strategies developed for graph par-
titioners [10–12]. In the multi-level algorithm, we coarsen a hypergraph into
successively smaller hypergraphs. We partition the smallest hypergraph and
project the coarse decomposition back to the larger hypergraphs, using local
optimization to reduce hyperedge cuts while maintaining balance at each level.

The coarsening phase uses reduction methods that are based on graph match-
ing algorithms adapted to hypergraphs. Each type of reduction method —
matching, packing, and grouping — selects a set of vertices and combines
them into a single, “larger” vertex. In matching, a pair of connected vertices
is replaced with an equivalent vertex; the new vertex’s weight, connectivity,
and associated hyperedge weights represent the original pair of vertices rea-
sonably. Packing methods replace all vertices connected by a hyperedge with
an equivalent vertex. Grouping methods replace all ungrouped vertices con-
nected by a single hyperedge with an equivalent vertex. Optimal matching,
packing and grouping algorithms are typically very time consuming; they ei-
ther are NP-complete or have run-times that are O(np) where p is large. Thus,
we implemented several fast approximation algorithms for these tasks [56].

The coarsest hypergraph is then partitioned. If the coarsest hypergraph has k
or fewer vertices (where k is the number of requested partitions), each vertex
is trivially assigned to a partition. Otherwise, a greedy partitioning method

14

establishes the coarse-hypergraph decomposition.

Finally, the coarse partition is projected onto the successively finer hyper-
graphs. A coarse vertex’s partition assignment is given to all fine vertices
that were reduced into the coarse vertex. At each projection, a variation of
the Fiduccia-Mattheyes [57] optimizer reduces the weight of cut hyperedges
while maintaining load balance. The local optimizer generates two partitions
(k = 2). For k > 2, the hypergraph partitioner is applied recursively.

Example 3 To demonstrate the effectiveness of hypergraph partitioning, we
applied both graph and hypergraph partitioners to matrices and compared
the communication volume required for matrix-vector multiplication using
the resulting decompositions. For both methods, each row i of the matrix
A was represented by node ni. For hypergraph methods, each column j was
represented by a hyperedge hj with hj = {ni : aij 6= 0}. For graph methods,
edge eij connecting nodes ni and nj existed for each non-zero aij or aji in the
matrix A; that is, the graph represented the symmetrized matrix A+ AT .

The first matrix is from a standard hexahedral finite element simulation; it is
symmetric and very sparse. This type of matrix is represented well by graphs.
As a result, hypergraph partitioning has only a small advantage over graph
partitioning for this type of matrix [49]. For a five-partition decomposition, hy-
pergraph partitioning reduced total communication volume 2-22% compared
to graph partitioning. Detailed results are in Table 3; the “best” and “worst”
Zoltan hypergraph methods correspond to different reduction strategies.

Greater benefit from hypergraph partitioning is seen using a matrix from a
polymer self-assembly simulation in the density-functional theory (DFT) code
Tramonto [46]. The matrix has 46,176 rows with 3,690,048 non-zeros in an
intricate sparsity pattern arising from the wide stencil used in Tramonto. For
an eight-partition decomposition, hypergraph partitioning reduced total com-
munication volume 37-56% relative to graph partitioning. Hypergraph parti-
tioning also reduced the number of neighboring partitions. Detailed results
are in Table 4. Because our methods are not yet optimized, we do not report
partitioning times; however, Catalyurek and Aykanat show that hypergraph
partitioning takes up to 2.5 times as much time as graph partitioning [49]. 2

These experiments and others [49] show the promise of hypergraph parti-
tioning for emerging applications. To be effective for dynamic load balancing,
however, parallel hypergraph partitioners are needed. Also, to keep data move-
ment costs low, incremental hypergraph algorithms are needed; extension of
diffusive graph algorithms [13] to hypergraphs is a logical approach, but is
complicated by the hyperedges’ larger cardinality.

15

Table 3
Comparison of graph and hypergraph partitioning for HexFEMmatrix (Example 3).

HexFEM Matrix:
• Hexahedral 3D
structured-mesh
finite element method.
• 32,768 rows
• 830,584 non-zeros
• Five partitions

Partitioning Imbalance # of Neighbor Communication Reduction
Method (Max / Partitions per Volume over all of Total

Avg Work) Partition Partitions Communication
Volume

Max Avg Max Total

Graph method 1.03 4 3.6 1659 6790
(METIS
PartKWay)

Best Zoltan 1.013 4 3.6 1164 5270 22%
hypergraph
method (RRM)

Worst Zoltan 1.019 4 2.8 2209 6644 2%
hypergraph
method (RHP)

Table 4
Comparison of graph and hypergraph partitioning for PolyDFT matrix (Example 3).

PolyDFT matrix
• Polymer self-assembly
simulation
• Density functional
theory code
• 46,176 rows
• 3,690,048 non-zeros
• Eight partitions

Partitioning Imbalance # of Neighbor Communication Reduction
Method (Max / Partitions per Volume over all of Total

Avg Work) Partition Partitions Communication
Volume

Max Avg Max Total

Graph method 1.03 7 6 7382 44,994
(METIS
PartKWay)

Best Zoltan 1.018 5 4 3493 19,427 56%
hypergraph
method (MXG)

Worst Zoltan 1.03 6 5.25 5193 28,067 37%
hypergraph
method (GRP)

16

5 Resource-Aware Load Balancing

Load-balancing research is driven not only by emerging applications, but also
by emerging parallel architectures. These new architectures span many scales.
Clusters have become viable alternatives to tightly coupled parallel comput-
ers for small-scale systems. They are cost-effective environments for running
computationally intensive distributed applications. An attractive feature of
clusters is the ability to increase their computational power by adding nodes.
Such expansions can result in heterogeneous environments, as newly added
nodes often have superior capabilities. On the medium scale, many super-
computers (e.g., ASCI Q, Earth Simulator) are constructed as networks of
shared-memory multiprocessors (SMPs) with complex and non-homogeneous
interconnection topologies. And on the largest scale, grid technologies have en-
abled computation on widely distributed systems, combining geographically
distributed clusters and supercomputers into a single computational resource.
These grids introduce extreme computational and network heterogeneity.

To distribute data from any application effectively on such systems, partition-
ers must be resource-aware; that is, they must account for heterogeneity in
the execution environment. Resource-aware balancing requires gathering in-
formation about the computing environment (e.g., computing, network and
memory availability), and determining how to use the information for load
balancing (e.g., by adjusting partition sizes and/or selecting appropriate par-
titioning algorithms). A number of projects attempt to address these issues.
Teresco et al. [58] use a directed-graph model to represent hierarchical envi-
ronments; their work is a precursor of the work described here. Minyard and
Kallinderis [59] monitor process “wait times” to assign element weights that
are used in octree partitioning. Walshaw and Cross [60] couple a multilevel
graph algorithm with a model of a heterogeneous communication network to
minimize a communication cost function. Sinha and Parashar [61] use the Net-
work Weather Service (NWS) [62] to gather information about the state and
capabilities of available resources; they compute the load capacity of each node
as a weighted sum of processing, memory, and communications capabilities.

We are developing a model for resource-aware load balancing called DRUM
(Dynamic Resource Utilization Model) [63]. DRUM provides applications ag-
gregated information about the computation and communication capabilities
of an execution environment. DRUM can be viewed as an abstract object that
1) encapsulates the details of hardware resources, capabilities and intercon-
nection topology, 2) provides a facility for dynamic, modular, and minimally
intrusive monitoring of an execution environment, and 3) distills this informa-
tion to a scalar “power” value, readily usable by any load-balancing algorithm
as the percentage of overall application load to be assigned to a partition.
DRUM has been designed to work with Zoltan, but may also be used as a

17

separate library.

DRUM represents the underlying interconnection network topology of hier-
archical systems (e.g., clusters of clusters, or clusters of multiprocessors) as
a tree. The root of the tree represents the total execution environment. Its
children are high-level divisions of networks connected to form the total ex-
ecution environment. Sub-environments are recursively divided, according to
the network hierarchy, with the tree leaves being individual computation nodes

(i.e., single processors (SP) or SMPs). Computation nodes have data repre-
senting their relative computing and communication power. Non-leaf network

nodes, representing routers or switches, have an aggregate power calculated
as a function of the powers of their children and the network characteristics.
In Figure 4, we show a tree representing a cluster with eight SPs and three
SMPs connected in a hierarchical network structure.

SMP SMP

SP SP

SP SP SP SP SP SP

SwitchRouter

Router Router SMP

Router

Communication node

Processing node

Fig. 4. Tree constructed by DRUM to represent a heterogeneous network.

Necessary knowledge of the execution environment’s underlying topology is
specified in an XML file created by running a graphical configuration tool. The
configuration tool also assesses nodes’ computational capabilities by running
benchmarks (currently LINPACK [64]) and checks for optional facilities used
by DRUM (e.g., threading capabilities). The configuration tool needs to be
re-run only when hardware characteristics of the system have changed.

Powers may be computed from the static benchmark data only or may include
dynamic information from monitoring agents. At every node, agents in sep-
arate threads probe network interfaces for communication volume; network
nodes are monitored by representative processes. At each computation node,
agents measure the CPU load and memory capacity as viewed by each local
process of the parallel job. (An NWS interface is also available for gathering
this information.) We compute the power of node n as the weighted sum of a
processing power pn and a communication power cn:

powern = wcomm
n cn + wcpu

n pn, wcomm
n + wcpu

n = 1.

Since multiple relevant processes might run on each node n, we extend the no-

18

tion of a node’s power to processes. We denote LPn = {psn,j, j = 1, 2, . . . , kn},
the set of kn processes psn,j running on node n and invoking DRUM services.

For computation node n with m CPUs, we evaluate the processing power pn,j

for each process psn,j in LPn based on (i) CPU utilization un,j by process
psn,j, (ii) the percentage it of time that CPU t is idle (and, thus, available
for computation if processes receive more work), and (iii) the node’s static
benchmark rating (in MFLOPS) bn. The overall idle time in node n is

∑m
t=1

it.
However, when kn < m, the maximum exploitable total idle time is kn −
∑kn

j=1 un,j. Therefore, the total idle time that processes psn,j could exploit is

min(kn −
∑kn

j=1 un,j,
∑m

t=1
it). Assuming all processes psn,j on node n should

have equal power, we compute average CPU usage and idle times per process:

un =
1

kn

kn
∑

j=1

un,j , in =
1

kn

min(kn −
kn
∑

j=1

un,j ,
m

∑

t=1

it) .

Processing power pn,j is estimated as

pn,j = bn(un + in), j = 1, 2, . . . , kn .

Since pn,j is the same for all processes j on node n, pn =
∑kn

j=1 pn,j = knpn,1. On
internal nodes, pn is the sum of the processing powers of the nodes’ children.

We estimate a node’s communication power based on the communication traf-
fic at the node. At each computation and (when possible) network node, agents
estimate the average rate of incoming packets λ and outgoing packets µ on each
relevant communication interface. We view a node’s communication power as
inversely proportional to the communication activity factor CAF = λ+ µ at
that node. The CAF provides dynamic information about the traffic passing
through a node, the communication traffic at neighboring nodes, and, to some
extent, the traffic in the overall system. The communication power of nodes
with more than one interface (e.g., routers) is computed as the average of the
powers on each interface. Let CAFn,i denote the CAF of interface i of a node
n with s interfaces. We estimate the communication power as

cn =
1

s

s
∑

i=1

1

CAFn,i

.

In practice, software loop-back interfaces and interfaces with CAF = 0 are
ignored. To compute per-process communication powers for processes j, j =
1, 2, . . . , kn, on node n, we compute cn and associate

1

kn

cn with each process.
For consistency, if at least one non-root network node cannot be probed for
communication traffic, all internal nodes are assigned CAF values computed
as the sum of their immediate children’s values.

The value of wcomm
n is currently specified manually. The possibility of basing

wcomm
n on dynamic factors, such as CAF , is being considered.

19

A top-down normalization is also performed for the values of pn and cn at each
level of the tree. Thus, for each node n in Li (the set of nodes at level i), the
final power is computed as

powern = ppn(w
comm
n

cn
∑|Li|

j=1 cj
+ wcpu

n

pn
∑|Li|

j=1 pj

)

where ppn is the power of the parent of node n; for the root node, ppn = 1.

Example 4 We present experimental results using DRUM in the solution of
a Laplace equation on the unit square, using Mitchell’s Parallel Hierarchical
Adaptive MultiLevel software (PHAML) [65]. After 17 adaptive refinement
steps, the mesh has 524,500 nodes. We used a Sun cluster at Williams College
consisting of “fast” 450MHz Sparc UltraII nodes and “slow” 300/333MHz
Sparc UltraII processors, connected by fast (100 Mbit) Ethernet. Benchmark
runs indicated that the fast nodes have a computation rate of approximately
1.5 times faster than the slow nodes. Given an equal distribution of work, the
fast nodes would be idle one third of the time. Zoltan’s HSFC procedure is
used for partitioning; results are similar for other methods.

Table 5 shows wall clock solution times using equally sized partitions and
DRUM’s resource-aware partitions. Computations on uniform speed proces-
sors indicate only a small overhead incurred by DRUM’s dynamic monitoring.
With uniform partitions, adding two slow processors actually slows the com-
putation. DRUM’s resource-aware partitions allow more effective use of these
processors, particularly when factoring in communication power. In prelimi-
nary experiments with larger numbers of processors, DRUM’s resource-aware
partitions show similar improvements. 2

Table 5
Solution wall clock times (in seconds) using uniformly sized partitions and DRUM’s
resource-aware partitions for various values of wcomm

n in Example 4.

Nodes Uniform wcomm
n = 0.0 wcomm

n = 0.1 wcomm
n = 0.25

4 fast 292.33 295.53 294.94 295.04

4 fast+2 slow 348.35 270.23 263.11 283.05

4 fast+4 slow 268.03 248.20 243.48 235.02

Many enhancements to DRUM are underway or planned for the future. The
expression for the communication power is being revised to include information
such as interface speed (bandwidth) and link latency. Dynamic communica-
tion weight selection is being investigated. When communication is overlapped
with computation, a weighted sum may not be an accurate model, so other
ways to combine communication and processing power will be considered. We
are also investigating ways to include memory statistics into the power ex-
pression. DRUM agents currently monitor the available and total memory on

20

each computation node. More refined memory statistics (e.g., number of cache
levels, cache hit ratio, cache and main memory access times) are needed to
capture memory effects in the model. We are also developing a package for
data collection and analysis that will enable us to filter noisy data and obtain
better estimates of computational and communication performance.

Most previous work focuses on incorporating environment information into
pre-selected partitioning algorithms. As an alternative, such information could
be used to select appropriate partitioning strategies. For example, DRUM’s
hierarchical machine model leads naturally to topology-driven hierarchical par-
titioning. Work is divided among the children of the root of the DRUM tree,
with the child nodes’ powers determining the amount of work to be assigned
to each node. The work assigned to these nodes is then recursively partitioned
among the nodes in their subtrees. Different partitioning methods can be used
in each level and subtree to produce effective partitions with respect to the
network; for example, graph or hypergraph partitioners could minimize com-
munication between nodes connected by slow networks while fast geometric
partitioners operate within each node.

We are developing these capabilities in Zoltan. Preliminary tests use an adap-
tive finite element simulation on a Sun cluster of multiprocessors. The subsets
of the cluster used for the experiments are four two-processor 450MHz Sparc
UltraII nodes and two four-processor 450MHz Sparc UltraII nodes, all con-
nected by fast (100 Mbit) Ethernet. Among all combinations of traditional and
hierarchical procedures, time to solution was often minimized using hierarchi-
cal load balancing using ParMETIS for inter-node partitioning and RIB within
each node [66]. Further studies will be performed using hierarchical balancing
on larger clusters and with a wider variety of architectures and applications.

6 Conclusions and Future work

While great progress has been made in dynamic load balancing for paral-
lel, unstructured and/or adaptive applications, research continues to address
issues arising due to application and architecture requirements. Existing al-
gorithms, such as the geometric algorithms RCB and HSFC, are being aug-
mented to support special needs of complex applications. New models using
hypergraphs are being developed to more accurately represent highly con-
nected, non-symmetric, and/or rectangular systems arising in density func-
tional theory, circuit simulations, and integer programming. On heterogeneous
computer architectures, software such as DRUM dynamically detects the avail-
able computing, memory and network resources, and provides the resource
information to both existing partitioning algorithms and new hierarchical par-
titioning strategies. Software toolkits such as Zoltan deliver these capabilities

21

to applications, enable comparisons of methods within applications, and serve
as test-beds for further research and development.

While we present some solutions to these issues, our work represents only a
small sample of continuing research into load balancing. For adaptive finite
element methods, data movement from an old decomposition to a new one can
consume orders of magnitude more time than the actual computation of a new
decomposition; highly incremental partitioning strategies that minimize data
movement are important for high performance of adaptive simulations [67,68].
In overlapping Schwartz preconditioning, the work to be balanced depends on
data in both the processor’s subdomain and the overlap region, while the size of
the overlap region depends on the subdomain generated by the partitioner. In
such cases, standard partitioning models that assume work per processor is the
total weight of objects assigned to the processor are insufficient; strategies that
treat workloads as a function of the subdomain are needed [69]. Very large-
scale semantic networks place additional demands on partitioners, due to both
their high connectivity and irregular structure; highly effective partitioning
techniques for these networks are in their infancy [70]. These examples of
research in partitioning, while still not exhaustive, demonstrate that, indeed,
the load-balancing problem is not yet solved.

References

[1] M. J. Berger, S. H. Bokhari, A partitioning strategy for nonuniform problems
on multiprocessors, IEEE Trans. Computers C-36 (5) (1987) 570–580.

[2] H. D. Simon, Partitioning of unstructured problems for parallel processing, in:
Proc. Conference on Parallel Methods on Large Scale Structural Analysis and
Physics Applications, Pergammon Press, 1991.

[3] V. E. Taylor, B. Nour-Omid, A study of the factorization fill-in for a parallel
implementation of the finite element method, Int. J. Numer. Meth. Engng. 37
(1994) 3809–3823.

[4] M. S. Warren, J. K. Salmon, A parallel hashed oct-tree n-body algorithm, in:
Proc. Supercomputing ’93, Portland, OR, 1993.

[5] J. R. Pilkington, S. B. Baden, Partitioning with spacefilling curves, CSE
Technical Report CS94–349, Dept. Computer Science and Engineering,
University of California, San Diego, CA (1994).

[6] A. Patra, J. T. Oden, Problem decomposition strategies for adaptive hp finite
element methods, Computing Systems in Engg. 6 (2) (1995) 97–109.

[7] W. F. Mitchell, Refinement tree based partitioning for adaptive grids, in: Proc.
Seventh SIAM Conf. on Parallel Processing for Scientific Computing, SIAM,
1995, pp. 587–592.

22

[8] J. Flaherty, R. Loy, M. Shephard, B. Szymanski, J. Teresco, L. Ziantz, Adaptive
local refinement with octree load-balancing for the parallel solution of three-
dimensional conservation laws, J. Parallel Distrib. Comput. 47 (2) (1998) 139–
152.

[9] A. Pothen, H. Simon, K. Liou, Partitioning sparse matrices with eigenvectors
of graphs, SIAM J. Matrix Anal. 11 (3) (1990) 430–452.

[10] T. Bui, C. Jones, A heuristic for reducing fill in sparse matrix factorization,
in: Proc. 6th SIAM Conf. Parallel Processing for Scientific Computing, SIAM,
1993, pp. 445–452.

[11] B. Hendrickson, R. Leland, A multilevel algorithm for partitioning graphs, in:
Proc. Supercomputing ’95, ACM, 1995.

[12] G. Karypis, V. Kumar, A fast and high quality multilevel scheme for
partitioning irregular graphs, Tech. Rep. CORR 95–035, University of
Minnesota, Dept. Computer Science, Minneapolis, MN (June 1995).

[13] G. Cybenko, Dynamic load balancing for distributed memory multiprocessors,
J. Parallel Distrib. Comput. 7 (1989) 279–301.

[14] Y. Hu, R. Blake, An optimal dynamic load balancing algorithm, Tech. Report
DL-P-95-011, Daresbury Laboratory, Warrington, WA4 4AD, UK (Dec. 1995).

[15] E. Leiss, H. Reddy, Distributed load balancing: design and performance
analysis, W.M. Keck Research Computation Laboratory 5 (1989) 205–270.

[16] S. Plimpton, S. Attaway, B. Hendrickson, J. Swegle, C. Vaughan, D. Gardner,
Transient dynamics simulations: Parallel algorithms for contact detection and
smoothed particle hydrodynamics, J. Parallel Distrib. Comput. 50 (1998) 104–
122.

[17] H. C. Edwards, A Parallel Infrastructure for Scalable Adaptive Finite Element
Methods and its Application to Least Squares C∞ Collocation, Ph.D. thesis,
The University of Texas at Austin (May 1997).

[18] K. Devine, J. Flaherty, Parallel adaptive hp-refinement techniques for
conservation laws, Appl. Numer. Math. 20 (1996) 367–386.

[19] K. Schloegel, G. Karypis, V. Kumar, Multilevel diffusion algorithms for
repartitioning of adaptive meshes, Journal of Parallel and Distributed
Computing 47 (2) (1997) 109–124.

[20] C. Walshaw, M. Cross, K. McManus, Multiphase mesh partitioning, App. Math.
Modelling 25 (2000) 123–140.

[21] K. Schloegel, G. Karypis, V. Kumar, Parallel static and dynamic
multiconstraint graph partitioning, Concurrency and Computation – Practice
and Experience 14 (3) (2002) 219–240.

[22] B. Hendrickson, R. Leland, The Chaco user’s guide, version 2.0, Tech. Rep.
SAND94–2692, Sandia National Laboratories, Albuquerque, NM (Oct. 1994).

23

[23] C. Walshaw, The Parallel JOSTLE Library User’s Guide, Version 3.0,
University of Greenwich, London, UK (2002).

[24] R. Preis, R. Diekmann, The PARTY partitioning library, user guide version 1.1,
Tech. Rep. tr-rsfb-96-024, Dept. of Computer Science, University of Paderborn,
Paderborn, Germany (Sept. 1996).

[25] F. Pelligrini, SCOTCH 3.4 user’s guide, Research Rep. RR-1264-01, LaBRI
(Nov. 2001).

[26] G. Karypis, V. Kumar, ParMETIS: Parallel graph partitioning and sparse
matrix ordering library, Tech. Rep. 97-060, Department of Computer
Science, University of Minnesota, available on the WWW at URL
http://www.cs.umn.edu/~metis (1997).

[27] K. Devine, E. Boman, R. Heaphy, B. Hendrickson, C. Vaughan, Zoltan data
management services for parallel dynamic applications, Computing in Science
and Engineering 4 (2) (2002) 90–97.

[28] K. Devine, B. Hendrickson, E. Boman, M. St. John, C. Vaughan, Zoltan:
A Dynamic Load Balancing Library for Parallel Applications; User’s Guide,
Sandia National Laboratories, Albuquerque, NM, tech. Report SAND99-1377
http://www.cs.sandia.gov/Zoltan/ug_html/ug.html (1999).

[29] K. D. Devine, B. A. Hendrickson, Tinkertoy parallel programming: A case study
with Zoltan, Int. J. Computational Science and Engineering To appear.

[30] B. Maerten, D. Roose, A. Basermann, J. Fingberg, G. Lonsdale, DRAMA: A
library for parallel dynamic load balancing of finite element applications, in:
Proc. Ninth SIAM Conference on Parallel Processing for Scientific Computing,
San Antonio, TX, 1999.

[31] A. Pinar, B. Hendrickson, Communication support for adaptive computation,
in: Proc. 10th SIAM Conf. Parallel Processing for Scientific Computing,
Portsmouth, VA, 2001.

[32] G. Karypis, Multi-constraint mesh partitioning for contact/impact
computations, in: Proc. SC2003, ACM, Phoenix, AZ, 2003.

[33] H. Sagan, Space-Filling Curves, Springer-Verlag, New York, NY, 1994.

[34] D. Moore, Fast hilbert curve generation, sorting and range queries, http://
www.caam.rice.edu/~dougm/twiddle/Hilbert.

[35] A. Butz, Alternative algorithm for Hilbert’s space-filling curve, IEEE Trans.
Comp. (1971) 424–426.

[36] S. Thomas, Software Library, http://www.mit.edu/afs/athena.mit.edu/

activity/c/cgs/src/urt3.1/lib/hil%bert.c (1991).

[37] J. Lawder, P. King, Using space-filling curves for multi-dimensional indexing,
Lecture Notes in Computer Science 1832.

24

[38] J. Lawder, P. King, Querying multi-dimensional data indexed using the Hilbert
space-filling curve, SIGMOD Record 30 (1) (2001) 19–24.

[39] P. M. Campbell, The performance of an octree load balancer for parallel
adaptive finite element computation, Master’s thesis, Computer Science Dept.,
Rensselaer Polytechnic Institute, Troy, NY (2001).

[40] G. Karypis, V. Kumar, Multilevel algorithms for multiconstraint graph
paritioning, Tech. Rep. 98-019, Department of Computer Science, University
of Minnesota (1998).

[41] M. A. Iqbal, Approximate algorithms for partitioning and assignment problems,
Int. J. Parallel Programming 20 (5) (1991) 341–361.

[42] B. Olstad, F. Manne, Efficient partitioning of sequences, IEEE Trans. Comp.
44 (1995) 1322–1326.

[43] A. Pinar, Combinatorial algorithms in scientific computing, Ph.D. thesis,
University of Illinois–Urbana-Champaign (2001).

[44] A. H. Stone, J. W. Tukey, Generalized sandwich theorems, Duke Math. J. 9
(1942) 356–359.

[45] C. Y. Lo, J. Matousek, W. Steiger, Algorithms for ham-sandwich cut, Disc.
Comput. Geometry 11 (4) (1994) 433–452.

[46] L. J. D. Frink, A. G. Salinger, M. P. Sears, J. D. Weinhold, A. L. Frischknecht,
Numerical challenges in the application of density functional theory to biology
and nanotechnology, J. Phys. Cond. Matter 14 (2002) 12167–12187.

[47] B. Hendrickson, Graph partitioning and parallel solvers: Has the emperor no
clothes?, Lecture Notes in Computer Science 1457 (1998) 218 – 225.

[48] B. Hendrickson, T. Kolda, Graph partitioning models for parallel computing,
Parallel Computing 26 (2000) 1519 – 1534.

[49] U. Catalyurek, C. Aykanat, Hypergraph-partitioning based decomposition for
parallel sparse-matrix vector multiplication, IEEE Trans. Parallel Dist. Systems
10 (7) (1999) 673–693.

[50] A. Caldwell, A. Kahng, J. Markov, Design and implementation of move-based
heuristics for VLSI partitioning, ACM J. Experimental Algs. 5 (5).

[51] B. Vastenhouw, R. H. Bisseling, A two-dimensional data distribution method
for parallel sparse matrix-vector multiplication, SIAM Review To appear.

[52] C. Chang, T. Kurc, A. Sussman, U. Catalyurek, J. Saltz, A hypergraph-based
workload partitioning strategy for parallel data aggregation, in: Proc. of 11th
SIAM Conf. Parallel Processing for Scientific Computing, SIAM, 2001.

[53] M. Ozdal, C. Aykanat, Hypergraph models and algorithms for data-pattern
based clustering, Data Mining and Knowledge Discovery 9 (1) (2004) 29–57.

25

[54] G. Karypis, R. Aggarwal, V. Kumar, S. Shekhar, Multilevel hypergraph
partitioning: application in VLSI domain, in: Proc. 34th conf. Design
automation, ACM, 1997, pp. 526 – 529.

[55] U. Catalyurek, C. Aykanat, Decomposing irregularly sparse matrices for parallel
matrix-vector multiplications, Lecture Notes in Computer Science 1117 (1996)
75 – 86.

[56] E. Boman, K. Devine, R. Heaphy, B. Hendrickson, M. Heroux, R. Preis,
LDRD report: Parallel repartitioning for optimal solver performance, Tech. Rep.
SAND2004–0365, Sandia National Laboratories, Albuquerque, NM (Feb. 2004).

[57] C. M. Fiduccia, R. M. Mattheyses, A linear time heuristic for improving network
partitions, in: Proc. 19th IEEE Design Automation Conf., IEEE, 1982, pp. 175–
181.

[58] J. D. Teresco, M. W. Beall, J. E. Flaherty, M. S. Shephard, A hierarchical
partition model for adaptive finite element computation, Comput. Methods
Appl. Mech. Engrg. 184 (2000) 269–285.

[59] T. Minyard, Y. Kallinderis, Parallel load balancing for dynamic execution
environments, Comput. Methods Appl. Mech. Engrg. 189 (4) (2000) 1295–1309.

[60] C. Walshaw, M. Cross, Multilevel Mesh Partitioning for Heterogeneous
Communication Networks, Future Generation Comput. Syst. 17 (5) (2001) 601–
623, (originally published as Univ. Greenwich Tech. Rep. 00/IM/57).

[61] S. Sinha, M. Parashar, Adaptive system partitioning of AMR applications on
heterogeneous clusters, Cluster Computing 5 (4) (2002) 343–352.

[62] R. Wolski, N. T. Spring, J. Hayes, The Network Weather Service: A distributed
resource performance forecasting service for metacomputing, Future Generation
Comput. Syst. 15 (5-6) (1999) 757–768.

[63] J. Faik, L. G. Gervasio, J. E. Flaherty, J. Chang, J. D. Teresco, E. G. Boman,
K. D. Devine, A model for resource-aware load balancing on heterogeneous
clusters, Tech. Rep. CS-03-03, Williams College Department of Computer
Science, http://www.cs.williams.edu/drum/ (2003).

[64] J. J. Dongarra, C. B. Moler, J. R. Bunch, G. W. Stewart, LINPACK User’s
Guide, SIAM, Philadelphia (1979).

[65] W. F. Mitchell, The design of a parallel adaptive multi-level code in Fortran 90,
in: Proc. 2002 Internatl. Conf. on Computational Science, Amsterdam, 2002.

[66] J. D. Teresco, Hierarchical partitioning and dynamic load balancing for scientific
computation, Tech. Rep. CS-04-04, Williams College Department of Computer
Science, submitted as extended abstract to PARA ’04. (2004).

[67] M. Berzins, A new algorithm for adaptive load balancing, in: Proc. of 12th
SIAM Conf. Parallel Processing for Scientific Computing, SIAM, 2004.

26

[68] Y. F. Hu, R. J. Blake, D. R. Emerson, An optimal migration algorithm for
dynamic load balancing, Concurrency: Prac. and Exper. 10 (1998) 467–483.

[69] A. Pinar, B. Hendrickson, Exploiting flexibly assignable work to improve load
balance, in: Proc. 14th ACM symp. Parallel algs and archs, ACM, 2002, pp.
155 – 163.

[70] T. Eliassi-Rad, A. Pothen, A. Pinar, K. Henderson, E. Chow, B. Hendrickson,
Graph partitioning for complex networks, in: Proc. of 12th SIAM Conf. Parallel
Processing for Scientific Computing, SIAM, 2004.

27

